GENETICS HOME GENETICS TABLE OF CONTENTS   OBL HOME OBL REFERENCES
GENE CLADOGRAMS: PRIMATES

3. DO THE VARIOUS SPECIES OF APES FORM A CLADE RELATED BY COMMON DESCENT?

When the sequences of genes taken from different ape species are studied, the sequence comparisons depict a pattern.  All individuals do not have the same gene sequences nor is each one so distinct that they suggest separate origins.  The pattern is not correlated with variable aspects of the species’ environment such as temperature, rainfall, food sources, etc.  The pattern depicts a branching family tree of gene sequences which have descended from common ancestral sequences.  This pattern suggests that all ape species are related through descent from common ancestors.

     The following study is interesting because it depicts the relationships between members of a single species and relationships between the two species of chimps in addition to the relationships between ape species.

 

chart

MITOCHONDRIAL CYTOCHROME OXIDASE II SEQUENCES (Ruvulo, 1994)

 

3. Examples of molecules whose study has supported that ape species form a clade include:

--c-myc (Atchley, 1995)

--e globin sequences (Goodman, 1998)

--φη region (Goodman, 1994)

--γ globin region (Goodman, 1994)

--lysozyme amino acid sequences (Messier, 1997)

--e globin sequences (Porter, 1997)

--albumin structure (Sarich, 1967)

--mitochondrial cytochrome oxidase II (Ruvulo, 1994)

--immunological distance, plasma proteins, and DNA hybridization (Cronin, 1982)

--mitochondrial DNA (Horai, 1992)

--mitochondrial DNA (Ferris, )

IFN γ (Krause, 2005).

MRG receptors (Yang, 2005)

--Cu/Zn Superoxide dismutase (Fukuhara, 2002)

--mitochondrial DNA (Brown, )

--DNA-DNA hybridization (Sibley, )

--transferrin sequence (Isaac, )

--albumin sequence (Isaac, )

--DNA sequences (Hoyer, )

--rRNA (Hixson, )

--DNA hybridization (Marks, 1988)

--DNA hybridization (Felsenstein, 1987)

--Albumin intron (Page, 2001)

--Noncoding DNA in γ globin region (Page, 2001)

--DNA hybridization (Templeton, 1985)

--DNA hybridization (Sibley, 1990)

--DNA hybridization (Caccone, 1989)

--h globin 3’ untranslated and flanking (Goodman, )

--h globin IVS 2 (Goodman, )

--h globin 5’ flanking through exon 2 (Goodman, )

--h globin IVS 1 (Goodman, )

--HERV-K HmL6.17 (Johnson, 1999)

--RTL-Ia (Johnson, 1999)

--intergenic DNA in b globin cluster (Maeda, )

--h globin (Koop, 1986)

--Alu elements (Salem, 2003)

--serological analysis (Goodman, )

--lysozyme (Messier, 1997)

--chorionic somatomammatropin A(Ye, 2005)

TGIFLX (Wang, 2004)

--Just after the ape lineage separated from the Old World monkey lineage, the MHC-B region duplicated in apes to produce the MHC-B and MHC-C regions. Subsequently, a duplication in the MIC (MHC class I chain-related molecule) region produced MIC-A and MIC-B regions (Fukami-Kobayashi, 2005).

 

4. DO APES AND OLD WORLD MONKEYS FORM A CLADE RELATED BY COMMON DESCENT?

 

When the sequences of genes taken from different primate species are studied, the sequence comparisons depict a pattern.  All species do not have the same gene sequences nor is each sequence so distinct that they suggest separate origins.  The pattern is not correlated with variable aspects of the individuals’ environment such as temperature, rainfall, food sources, etc.  The pattern depicts a branching family tree of gene sequences which have descended from common ancestral sequences.  This pattern suggests that apes and old world monkeys (catarrhine primates) are related through descent from common ancestors.

 

4. Examples of molecules whose study has supported that apes and old world monkeys (catarrhine primates) form a clade include:

--apoA-IV (Babin, 1997)

--apoA-I (Babin, 1997)

--apoE (Babin, 1997)

--DRB(Edwards, 1997)

--e globin sequences (Goodman, 1998)

--b globin (Goodman, 1984)

--φη region (Goodman, 1994)

--γ globin region (Goodman, 1994)

--blue opsin (Hunt, 1995)

--rhodopsin (Kojima, 1999)

--yh globin (Koop, 1986)

--plasminogen (Lawn, 1997)

--intergenic DNA between y and d globin (Maeda, 1988)

--lysozyme amino acid sequences (Messier, 1997)

--albumin structure (Sarich, 1967)

--DNA-DNA hybridization (Sibley, )

--transferrin sequence (Isaac, )

--albumin sequence (Isaac, )

--DNA sequences (Hoyer, )

--rRNA (Hixson, )

--ECP (Larson, 1996)

--EDN (Larson, 1996)

--DNA hybridization (Marks, 1988)

--DNA hybridization (Felsenstein, 1987)

--Albumin intron (Page, 2001)

--Noncoding DNA in γ globin region (Page, 2001)

--DNA hybridization (Templeton, 1985)

--DNA hybridization (Sibley, 1990)

--DNA hybridization (Caccone, 1989)

--2 mutations TRP2  (Linman, 2003)

--h globin 3’ untranslated and flanking (Goodman, )

--h globin IVS 2 (Goodman, )

--h globin 5’ flanking through exon 2 (Goodman, )

--h globin IVS 1 (Goodman, )

--amino acid and nucleotide sequences (Goodman, 1985)

--BC200 mutations  (Kuryshev, 2001)

--albumin cross reactions with sera (Sarich, 1967)

--DRB intron4  (Satta, 1999)

--DRB intron5  (Satta, 1999)

--serological analysis (Goodman, )

--serological analysis (Goodman, 1962)

--lysozyme (Messier, 1997)

--prolactin inducible protein (Osawa, 2004)

--seminal vesicle autoantigen (including primate pseudogene) (Osawa, 2004)

--anterior cingulate cortex microarray probe (Uddin, 2004)

--Alu elements (Salem, 2003)

--IgA (Vernersson, 2004).

--eosinophil cationic protein (Zhang, 1998a)

--eosinophil-derived neurotoxin (Zhang, 1998a)

--chorionic somatomammatropin A (Ye, 2005)

--growth hormone (Ye, 2005)

IFN γ (Krause, 2005).

MRG receptors (Yang, 2005)

IFN –v (Krause, 2005).

IFN beta (Krause, 2005).

IFN Kappa (Krause, 2005).

IFN (Krause, 2005).

Cl: HERV-R inserted into genome (Kim, 2006).

167 genes (Kumar, 2005).

TGIFLX (Wang, 2004)

--Just after the ape lineage separated from the Old World monkey lineage, the MHC-B region duplicated in apes to produce the MHC-B and MHC-C regions. Subsequently, a duplication in the MIC (MHC class I chain-related molecule) region produced MIC-A and MIC-B regions (Fukami-Kobayashi, 2005).

 

5. DO APES, OLD WORLD MONKEYS, AND NEW WORLD MONKEYS FORM A CLADE RELATED BY COMMON DESCENT?

 

When the sequences of genes taken from different primate species are studied, the sequence comparisons depict a pattern.  All species do not have the same gene sequences nor is each sequence so distinct that they suggest separate origins.  The pattern is not correlated with variable aspects of the individuals’ environment such as temperature, rainfall, food sources, etc.  The pattern depicts a branching family tree of gene sequences which have descended from common ancestral sequences.  This pattern suggests that apes, old world monkeys, and new world monkeys (anthropoid primates) are related through descent from common ancestors.

5. Examples of molecules whose study has supported that apes, old world monkeys, and new world monkeys (anthropoid primates) form a clade include:

--c-myc (Atchley, 1995)

--β2 microglobulin (Dijkstra, 2003)

--DRB(Edwards, 1997)

--yh globin (Goodman, 1984)

--φη region (Goodman, 1994)

--γ globin region (Goodman, 1994)

--amino acid and nucleotide sequences (Goodman, 1985)

--blue opsin (Hunt, 1995)

--HERV-K HmL6.17(Johnson, 1999)

--yh globin (Koop, 1986)

--intergenic DNA between y and d globin (Maeda, 1988)

--lysozyme amino acid sequences (Messier, 1997)

--e globin sequences (Porter, 1997)

--albumin structure (Sarich, 1967)

--e globin sequences (Schneider, 1996)

--IRBP intron sequences (Scheneider, 1996)

--a galactosyltransferase (Galili, 1991)

--MHC II genes (Edwards, 1997)

--albumin cross reactions with sera (Sarich, 1967)

--serological analysis (Goodman, )

--serological analysis (Goodman, 1962)

--DAZ (Xu, 2001)

--cytochrome b (Yoder, 1996)

--lysozyme (Messier, 1997)

--SRY (Nagai, 2001)

--Albumin intron (Page, 2001)

--Noncoding DNA in γ globin region (Page, 2001)

--h globin (Koop, 1986)

--BC200 RNA  (Kuryshev, 2001)

--MHC (Nei, 1997)

--intergenic DNA in b globin cluster (Maeda, )

--short wave opsin (Shi, 2003)

--DRB intron4  (Satta, 1999)

--DRB intron5  (Satta, 1999)

--Alu elements (Salem, 2003)

--short wave opsin (Shi, 2003)

--ECP and ECD (Zhang, 1998a)

--eosinophil-derived neurotoxin (Zhang, 1998a)

TGIFLX (Wang, 2004)

--insertion of multiple Alu elements into the region equivalent to human chromosome 1q22 –basal anthropoids (Kuryshev, 2006).

--Unlike other mammals, anthropoid primates have undergone a number of changes in the enzyme cytochrome c oxidase enzyme, including changes of 11 of the 22 amino acids which interact with cytochrome c (Schmidt, 2005).

The glycosyltransferase pseudogene GGTA1P arose in anthropoids (Koike, 2007).

6. DO PRIMATES FORM A CLADE RELATED BY COMMON DESCENT?

 

When the sequences of genes taken from different primate species are studied, the sequence comparisons depict a pattern.  All species do not have the same gene sequences nor is each sequence so distinct that they suggest separate origins.  The pattern is not correlated with variable aspects of the individuals’ environment such as temperature, rainfall, food sources, etc.  The pattern depicts a branching family tree of gene sequences which have descended from common ancestral sequences.  This pattern suggests that primates are related through descent from common ancestors.

6. Examples of molecules whose study has supported that primates form a clade include:

--β2 microglobulin (Dijkstra, 2003)

 --DRB (Edwards, 1997)

--yh globin (Goodman, 1984)

--b globin (Goodman, 1984)

 --φη region (Goodman, 1994)

--γ globin region (Goodman, 1994)

--yh globin (Koop, 1986)

--e globin sequences (Porter, 1997)

--albumin structure (Sarich, 1967)

--cytochrome b gene sequence (Yoder, 1996)

--e globin sequences (Goodman, 1998)

--h globin 3’ untranslated and flanking (Goodman, )

--h globin IVS 2 (Goodman, )

--h globin 5’ flanking through exon 2 (Goodman, )

--h globin IVS 1 (Goodman, )

--amino acid and nucleotide sequences (Goodman, 1985)

--h globin (Koop, 1986)

--serological analysis (Goodman, 1962)

--albumin cross reactions with sera (Sarich, 1967)

--DRB intron4  (Satta, 1999)

--DRB intron5  (Satta, 1999)

--cytochrome b (Yoder, 1996)

 

There is anatomical evidence that tarsiers are more closely related to anthropoid primates than are other prosimians. Some molecular studies have supported this, such as the studies of the following molecules:

 --e globin sequences (Goodman, 1998)

--amino acid and nucleotide sequences (Goodman, 1985)

--Albumin intron (Page, 2001)

--Noncoding DNA in γ globin region (Page, 2001)

 

There is anatomical evidence that tree shrews are more closely related to primates than are other placental mammals. Some molecular studies have supported this, such as the studies of the following molecules:

--GnRH1 (Fernald, 1999)

--GNRH2 (Fernald, 1999)